19 research outputs found

    Module M1 of Zebrafish Neuroglobin Acts as a Structural and Functional Protein Building Block for a Cell-Membrane-Penetrating Activity

    Get PDF
    Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins

    Electron Transfer Function versus Oxygen Delivery: A Comparative Study for Several Hexacoordinated Globins Across the Animal Kingdom

    Get PDF
    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O2 and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O2 as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O2 actually binding to the iron atom, since the heme is oxidized by O2 faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins

    Association between Ngb polymorphisms and ischemic stroke in the Southern Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neuroglobin </it>(<it>Ngb</it>), one of novel members of the globin superfamily, is expressed predominantly in brain neurons, and appears to modulate hypoxic-ischemic insults. The mechanisms underlying <it>Ngb</it>-mediated neuronal protection are still unclear. For it is one of the candidate protective factors for ischemic stroke, we conducted a case-control study to clarify the association of <it>Ngb </it>polymorphisms with ischemic stroke in the Southern Chinese Han population.</p> <p>Methods</p> <p>355 cases and 158 controls were recruited. With brain imaging, cases were subdivided into large-artery atherosclerosis (LVD) and small-vessel occlusion (SVD) stroke. PCR amplified all the four exons of <it>Ngb </it>and flanking intron sequence for each exon. Genotyping for <it>Ngb </it>was achieved by direct sequencing and mismatched PCR-RFLP. Polymorphisms were studied both individually and as haplotypes in each group and subgroup which subdivided according to gender or age.</p> <p>Results</p> <p>Two intronic polymorphisms 89+104 c>t and 322-110 (6a)>5a were identified. The allele frequency of 89+104 t was decreased in stroke cases. The protective effect seems to be more pronounced in subgroups of female patients and age > 60 years. Also, we have confirmed decreased LDL-C level and reduced hypertension and hypercholesterolemia in 89+104 t allele carriers. In contrast, the 322-110 (6a)>5a genotype distribution was similar between cases and controls. However, the haplotype 89+104 c>t/322-110 (6a)>5a was related with LVD and SVD stroke. The haplotype c-5a was more frequent in both LVD and SVD groups while t-6a was more frequent in controls.</p> <p>Conclusion</p> <p>Ngb polymorphism 89+104 t had protective effects on LVD and SVD in the Southern Chinese Han population. A "hitchhiking" effect was observed for the 89+104 t/322-110 (6a) genotype combination especially for LVD.</p

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates
    corecore